

Tree Definitions

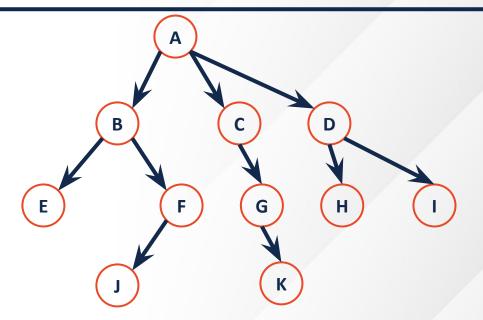
Learning Objectives

- Classify Different Parts of Trees
- 2. Differentiate between different types of trees

Tree Terminology

Node

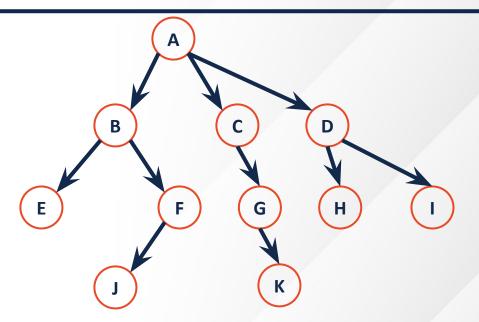
Edge



Tree Terminology

Types of Nodes

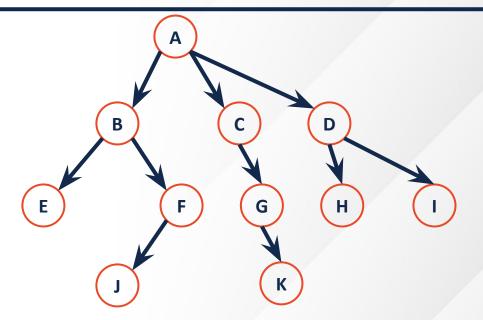
- Root
- Leaf
- Internal/Branch



Tree Terminology

Relationships:

- Sibling
- Descendant
- Ancestor



Trees

"The most important non-linear data structure in computer science."

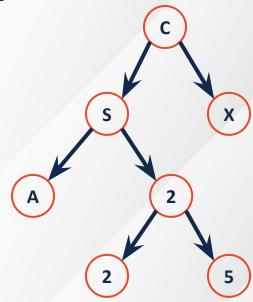
- Donald Knuth, The Art of Programming, Vol. 1

A tree is:

Binary Tree - Defined

A binary tree T is either:

OR

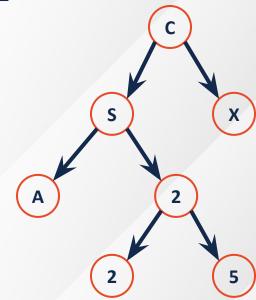


Binary Tree - Defined

A binary tree T is either:

$$T = (r, T_L, T_R)$$
OR

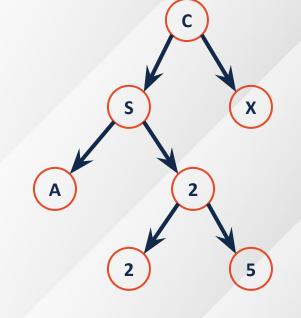
$$T = \emptyset$$



Tree Property: height

height(T): length of the longest path
from the root to a leaf

Given a binary tree T:



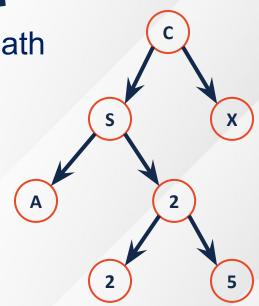
Tree Property: height

height(T): length of the longest path
from the root to a leaf

Given a binary tree T:

$$height(T) = max(height(T_L), height(T_R)) + 1$$

 $height(\emptyset) = -1$

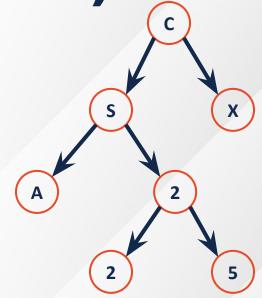


Tree Property: full (strict)

A tree **F** is **full** if and only if:

1.

2.



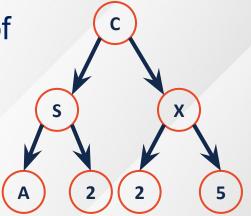
Tree Property: perfect

A **perfect** tree **P** is defined in terms of the tree's height.

Let **P**_h be a perfect tree of height **h**, and:

1.

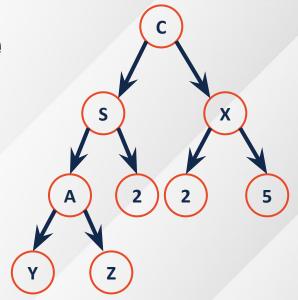
2



Tree Property: complete

Conceptually: A perfect tree for every level except the last, where the last level if "pushed to the left".

Slightly more formal: For all levels k in [0, h-1], k has 2^k nodes. For level h, all nodes are "pushed to the left".



Tree Property: complete

A complete tree C of height h, C_h:

- 1. **C**₋₁ = {}
- 2. C_h (where h>0) = {r, T_L , T_R } and either:

$$T_L$$
 is ____ and T_R is ____

OR

 T_L is _____ and T_R is _____

